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Abstract
We study the positive-operator-valued measures (POVMs) on the projective real
line covariant with respect to the projective group. We interpret the projective
line as a compactified time axis and we assume that the energy is a positive
operator. This formalism may describe a time-of-arrival observable for a free
particle covariant with respect to linear canonical transformations. The problem
is similar to the more complicated and physically more relevant problem of
finding the POVMs on the compactified Minkowski space–time covariant with
respect to the conformal group.

PACS numbers: 02.20.−a, 03.65.−w

1. Introduction

In the classical textbooks of quantum mechanics, observables are described by self-adjoint
operators or by the corresponding spectral measures. Several authors have remarked that
some measuring instruments define observables which require a more refined mathematical
description in terms of positive-operator-valued measures (POVMs) [1–4]. If M̂ is the
topological space of the possible results of the measurement, for every Borel subset I ⊂ M̂
one gives a positive operator τ(I ) and one assumes that all these operators form a normalized
countably additive POVM on the space M̂. If the normalized vector ψ belonging to the
Hilbert space H represents a physical state, (ψ, τ(I )ψ) is the probability that the result of the
measurement belongs to I .

If the theory has a symmetry group G acting on the Hilbert space H by means of its
unitary representation g → U(g) and on the space M̂ by means of its (not necessarily linear)
representation g → 	(g), it is natural to impose the covariance condition

U(g)τ(I )U(g)† = τ(	(g)I ). (1)

In this case the POVM τ and the unitary representation U form a covariance system. In many
physical situations the covariance property permits the explicit construction of relevant classes
of POVMs.

In recent years, these ideas have been applied to deal with many problems which could
not be treated by means of the usual formalism. For instance, the time observable, which

0305-4470/02/153547+12$30.00 © 2002 IOP Publishing Ltd Printed in the UK 3547

http://stacks.iop.org/ja/35/3547


3548 N Pinamonti and M Toller

cannot be described by a self-adjoint operator [5], has been treated in a completely satisfactory
way [6–9] in terms of a POVM defined on the time axis and covariant with respect to the
time-translation group. In a similar way one can treat the four space–time coordinates of an
event in terms of a POVM defined on the Minkowski space–time covariant with respect to the
Poincaré group [10, 11].

It has been shown [12, 13] that the form of the operators describing the coordinates of an
event can be determined in a natural way in a theory symmetric with respect to the conformal
group, as the theory which describes non-interacting photons. Since these operators cannot
be self-adjoint [14], it seems useful to reformulate the problem in terms of a POVM on the
compactified Minkowski space–time covariant with respect to the conformal group. Since
this problem [15] involves rather complicated calculations, in the present paper we study a
much simpler problem in which the group G = SU(2, 2) (a fourfold covering of the conformal
group) is replaced by G = SU(1, 1) (isomorphic to SL(2, R), the proper projective group of
the real line) and the compactified Minkowski space–time M̂ is replaced by the compactified
time axis (indicated by the same symbol). Practically all the relevant features of the original
problem appear in a simplified form in this model.

The group SU(1, 1) is composed of all the 2 × 2 complex matrices g with the properties

g†βg = β, det g = 1. (2)

In the standard definition of SU(1, 1) one puts

β =
(

1 0
0 −1

)
, (3)

but for our purposes it is more convenient to perform a change of basis and to adopt the
definition

β =
(

0 1
−1 0

)
. (4)

Then the condition det g = 1 is equivalent to the condition

gT βg = β (5)

and, comparing with equation (2), we see that g must be real. In conclusion, our group G,
isomorphic to SU(1, 1), is just SL(2, R), which coincides with the symplectic group Sp(2, R).
It is also isomorphic to a double covering of the proper orthochronous three-dimensional
Lorentz group SO↑(1, 2).

We put

g =
(
a b

c d

)
, ad − bc = 1, (6)

where a, b, c, d are real numbers. If d �= 0, we can always consider the decomposition

g =
(

1 t

0 1

) (
d−1 0

0 d

) (
1 0
v 1

)
, (7)

where

t = b

d
, v = c

d
. (8)

We consider the subgroup S ⊂ SL(2, R) containing all the real matrices of the form

s =
(
d−1 0

0 d

) (
1 0
u 1

)
, d �= 0, (9)
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and the homogeneous space M̂ = SL(2, R)/S. We indicate by M ⊂ M̂ the space of the
cosets composed of matrices with d �= 0. From the decomposition (7) we see that these cosets
contain representative elements of the form(

1 t

0 1

)
(10)

and we can identify M with the real time axis. All the matrices with d = 0 form a single
coset, interpreted as the point at infinity of the real projective line M̂.

In order to see how SL(2, R) operates on M̂, we write(
a b

c d

) (
1 t

0 1

)
=

(
1 t ′

0 1

)
s, s ∈ S, (11)

where

t ′ = 	(g)t = at + b

ct + d
. (12)

This equation can be extended in a natural way to the case in which t or t ′ are infinite and
it describes the projective transformations of M̂. We see that the first two matrices in the
right-hand side of equation (7) represent, respectively, time translations and time dilatations.

Given a covariant POVM on the time axis, one can define a time operator by means of the
formula

T =
∫

M̂
t dτ. (13)

From the covariance property (1), we obtain

U †(g)T U(g) =
∫
	(g)t dτ. (14)

If τ were a spectral (projection-valued) measure, we should immediately obtain the
transformation property

U †(g)T U(g) = T ′ = 	(g)T , (15)

similar to the classical formula (12). If τ is just a POVM of the general kind, this formula
follows only if 	(g) is linear, namely if g belongs to the affine subgroup of G, generated by
the time translations and the time dilatations. A similar situation was found in [12, 13] for
the transformation properties under the conformal group of the operators which describe the
space–time coordinates. In this case too, the classical transformation formula is valid only for
linear transformations, namely for the Poincaré group and the dilatations. As we have seen,
this does not mean that the formalism is not covariant with respect to the whole conformal
group.

A possible choice of the time operator is given by

T = −E−1/2DE−1/2, (16)

whereE is the energy operator andD is the generator of the time dilatations defined in section 3.
This formula is similar to the one suggested in [12,13] for the coordinate operators. The minus
sign appears because we are dealing with a time-of-arrival (measured by a classical external
clock) and not with the time measured by the system itself, considered as a clock. One may
ask under which conditions equations (13) and (16) define the same operator.

The identity SL(2, R) = Sp(2, R) suggests a physical interpretation in terms of linear
canonical transformations of a free particle in one dimension. We consider first the classical
(non-quantum) case, we assume that the mass is m = 1 and we indicate by q(t) and p(t) the
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canonical variables. The time-of-arrival t at which the particle reaches the origin q = 0 is
given by

t = − q(0)

p(0)
. (17)

An element g ∈ Sp(2, R) defines the canonical transformation

q ′ = aq − bp, p′ = −cq + dp (18)

and we see immediately that the time-of-arrival transforms according to equation (12).
In the corresponding quantum system, one can define a (Hermitian, but not self-adjoint)

time-of-arrival operator by writing, in the Heisenberg picture,

T = − 1
2 (QP

−1 + P−1Q) (19)

whereP andQ are the operators corresponding to the canonical variablesp and q. A complete
treatment can be found, for instance, in [6–9], where a wide bibliography can be found. As
we have seen above, instead of the operator T one can introduce a POVM τ on the time axis
covariant with respect to the time translation group. It may be interesting to try to impose the
covariance with respect to the larger group Sp(2, R) of the linear canonical transformations.
In this case, the unitary representation U is called the metaplectic representation and it is
double-valued [16,17]. In other words,U is an unitary representation of the metaplectic group
Mp(2), which is a double covering of Sp(2, R).

In order to construct a covariance system, it is convenient [18–20] to introduce an auxiliary
imprimitivity system [21,22]. In section 2 we classify the relevant imprimitivity systems and the
corresponding unitary representations, which, according to Mackey’s imprimitivity theorem,
can be described as induced representations. In section 3 we consider the Lie algebra of G,
we interpret one of the generators as the energy and we require that it is a positive operator.
Then we recall the classification of the positive-energy representations of SL(2, R) [23]. In
section 4 we find the positive-energy representations contained in the induced representations
found in section 2. In section 5 we use the results of the preceding sections to find the most
general covariance system. In particular, we show that the problem is soluble for every choice
of the positive-energy representation U .

In section 6 we introduce the generalizations necessary to treat the case in which U is a
ray representation of G, namely a unitary representation of its universal covering G̃. Then we
treat the model introduced above, described by the metaplectic representation, and we find that
a covariant POVM exists only for states with negative parity.

2. Imprimitivity systems

An imprimitivity system [21, 22] is a covariance system in which the POVM is a spectral,
namely a normalized projection-valued, measure. We use the notations introduced in the
preceding section and we consider the spectral measure I → E(I) on the space M̂ and a
unitary representation g → V (g) of the group G in the Hilbert space H′. If

V (g)E(I)V (g)† = E(	(g)I), (20)

we have an imprimitivity system.
If A : H → H′ is an intertwining operator between the representations U and V , namely

if

AU(g) = V (g)A, (21)

one can easily see (by using the unitarity of U and V ) that

I → τ(I ) = A†E(I)A (22)
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is a POVM which, together with the representation U , forms a covariance system, which is
normalized if A†A = 1, namely if A is isometric. It has been shown [18–20] that all the
covariance systems can be obtained in this way with a suitable choice of the imprimitivity
system and of the intertwining operator.

Then, in order to find the required covariance systems, the first step is the construction of
all the imprimitivity systems based on the group G and the homogeneous space M̂. This can be
obtained by means of Mackey’s imprimitivity theorem [21, 22], which gives a representation
of the space H′ by means of square integrable vector-valued functions φ(t) defined on M̂, on
which V acts as an induced representation. The Lebesgue measure dt on M defines a measure
on M̂ which is quasi-invariant under the action of G (the point at infinity has a vanishing
measure). Then we can put

‖φ‖2 =
∫

M̂
‖φ(t)‖2 dt. (23)

The projection operators E(I) are given by

[E(I)φ](t) = fI (t)φ(t), (24)

where fI (t) is the characteristic function of the set I .
From the physical point of view, the probability that the observable described by τ , when

measured on the state described by the normalized vector ψ , gives a result contained in the set
I is given by

(ψ, τ(I )ψ) = (Aψ,E(I)Aψ) =
∫
I

ρ(t) dt, (25)

where the probability density ρ(t) is given by

ρ(t) = ‖φ(t)‖2, φ = Aψ. (26)

In order to define the induced representation V , we have to choose a point of M̂, for
instance t0 = 0, and to consider the corresponding stabilizer subgroup defined by	(g)t0 = t0,
which, in the case we are considering, is just the subgroup S introduced in the preceding
section. For each point t ∈ M̂, we choose an element gt ∈ G with the property 	(gt )t0 = t .
For instance, if t is finite, we can choose

gt =
(

1 t

0 1

)
. (27)

Then, the induced representation V of G, which depends on the unitary representation S of S,
is given by

[V (g)φ](t) =
∣∣∣∣dt ′

dt

∣∣∣∣
1/2

S(g−1
t ggt ′)φ(t

′), (28)

where

t ′ = 	(g−1)t = dt − b

a − ct
,

dt ′

dt
= (a − ct)−2. (29)

The function φ takes its values in the Hilbert space of the representation S.
For the elements of S we use the notation

s = (u, d) =
(

1 0
u 1

) (
d−1 0

0 d

)
=

(
d−1 0

0 d

) (
1 0

ud−2 1

)
. (30)

Since we have

g−1
t ggt ′ = (c(a − ct)−1, (a − ct)−1), (31)
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equation (28) can be written more explicitly in the form

[V (g)φ](t) = |a − ct |−1S(c(a − ct)−1, (a − ct)−1)φ(t ′). (32)

We remark that S is the product of the subgroup S0 which contains the elements with
d > 0 and Z which contains the two elements g = ±1 (multiples of the identity matrix). One
can easily see that S0 is connected and simply connected and that Z is the centre of G. The
irreducible unitary representations (IURs) of S can be written in the form

S(u, d) = S0(u, |d|)d2ν |d|−2ν, ν = 0, 1/2, (33)

where S0 is an IUR of S0.
We also see that

(u, d)(u′, d ′) = (u + d2u′, dd ′), (34)

namely S0 is a semi-direct product isomorphic to the one-dimensional affine group. In order to
find its IURs, we use the classical procedure used by Wigner in his treatment of the IURs of the
Poincaré group [24]. The representation S0 operates on a space of square integrable functions
η(κ) defined on an orbit of the of the ‘momentum space’ and the ‘translation’ subgroup acts
in the following way:

[S0(u, 1)η](κ) = exp(−iuκ)η(κ). (35)

The action of the ‘homogeneous’ subgroup, composed of the elements of the form (0, d), on
the ‘momentum’ space is κ → d−2κ . The ‘momentum space’ (a real line) is decomposed into
three orbits:

O0 = {0}, O+ = {κ > 0}, O− = {κ < 0}. (36)

The IURs corresponding to the orbit O0 do not depend on the variable u, are one-
dimensional and have the form

S
γ

0 (u, |d|) = |d|−iγ , −∞ < γ < +∞. (37)

In the other two cases, in each orbit Oσ with σ = ±1, we choose a representative element
κ = σ . In both cases the stability subgroup contains only the unit element and the
corresponding IURs of S0 have the form

[Sσ0 (u, |d|)χ ](κ) = exp(−iuσκ)|d|χ(d2κ), (38)

where for σ = −1 we have changed the sign of κ in such a way that we always have κ > 0.
The norm is given by

‖χ‖2 =
∫ ∞

0
|χ(κ)|2 dκ. (39)

In conclusion, from equation (32) we have two classes of induced representations of G.
The representations of first class, induced by the representations

Sνγ (u, d) = S
γ

0 (u, |d|)d2ν |d|−2ν, (40)

can be written in the form

[V νγ (g)φ](t) = (a − ct)−2ν |a − ct |iγ+2ν−1φ(t ′), (41)

‖φ‖2 =
∫ +∞

−∞
|φ(t)|2 dt. (42)

The representations of the second class are induced by the representations

Sνσ (u, d) = Sσ0 (u, |d|)d2ν |d|−2ν, (43)

and are described by

[V νσ (g)φ](κ, t) = exp(−iσc(a − ct)−1κ)(a − ct)−2ν |a − ct |2ν−2φ(κ(a − ct)−2, t ′), (44)

‖φ‖2 =
∫ +∞

−∞
dt

∫ +∞

0
|φ(κ, t)|2 dκ. (45)
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3. Representations of the Lie algebra sl(2, R)

The Lie algebra L = sl(2, R) of SL(2, R) is composed of the real 2 × 2 matrices h with the
property

Tr h = 0. (46)

We introduce a basis composed of the elements

e =
(

0 −1
0 0

)
, d = 1

2

(
1 0
0 −1

)
, c =

(
0 0
1 0

)
, (47)

which represent, respectively, infinitesimal time translations, infinitesimal time dilatations and
a third kind of infinitesimal projective transformations. We indicate by −iE, −iD and −iC
the corresponding generators of a given unitary representation. They satisfy the commutation
relations

[E,C] = −2iD, [D,E] = iE, [D,C] = −iC. (48)

If the unitary representation U operates on physical states, the energy operator E must be
positive. We also assume that the trivial representation of G, which has a vanishing energy, is
not contained in U ; in fact, an invariant state cannot correspond to a normalizable probability
distribution. We indicate by L+ the smallest closed convex cone in L invariant with respect
to the adjoint representation which contains the element e. One can easily see that all the
elements of this cone are represented by positive operators. From the relation

exp

(
π

2
(e + c)

)
e exp

(
−π

2
(e + c)

)
= c, (49)

we see that c and e + c belong to L+. It follows that the operator

K = 1
2 (E + C) (50)

must be positive.
From equations (32) and (33), we obtain

exp(−2iπK) = V (exp(π(e + c))) = V (−1) = (−1)−2ν, (51)

and we see that K − ν must have integral eigenvalues. If we put

A± = E − C

2
± iD, (52)

we find

[K,A±] = ±A± (53)

and we see that the operatorsA± play the role of rising and lowering operators. It follows that,
for a given positive-energy IUR, the eigenvalues of K are k, k + 1, k + 2, . . . .

A complete treatment of the IURs of SL(2, R) is given in [23,25], where it is shown that
the positive-energy representations (together with the negative-energy ones) form the discrete
series and are labelled by the index k = 1/2, 1, 3/2, . . . . We indicate them by Dk(g). The
IURs of the universal covering of SL(2, R) are treated in [26, 27]. The positive-energy IURs
of the metaplectic group are labelled by the index k = 1/4, 1/2, 3/4, 1, . . . . We see that the
equivalence classes of positive-energy IURs of SL(2, R) or of its double coveringMp(2) form
a countable set. It follows that the representation U that acts on the ‘physical’ states is a direct
sum of IURs and the more subtle concept of direct integral is not needed for its treatment.
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In the space of the positive-energy IUR Dk we can introduce a ‘canonical’ basis {Zk
m}

with the properties [23]

KZk
m = mZk

m, m = k, k + 1, . . . , (54)

A±Zk
m = (m(m± 1)− k(k − 1))1/2Zk

m±1, (55)

and, in particular, we can characterize the vector Zk
k by means of the conditions

A−Zk
k = 0, KZk

k = kZk
k . (56)

In the canonical basis the representation operators Dk are described by the matrices

Dk
mm′(g) = (Zk

m,D
kZk

m′). (57)

4. The positive-energy subrepresentations

In order to treat the intertwining operator A, we have to find which IURs Dk are contained in
the representations (41) and (44). We have already shown that k− ν must be integral. A direct
approach to this problem is to find in the representation space a vector Zk

k which satisfies the
conditions (56). We recall that the generators of the infinitesimal transformations are defined
on an invariant dense linear subspace D ∈ H′.

If we consider first a representation of the kind (41) we obtain for the generators of the
infinitesimal transformations

E = i
d

dt
, (58)

D = − i + γ

2
− it

d

dt
, (59)

C = (i + γ )t + it2
d

dt
, (60)

K = i + γ

2
t +

i

2
(1 + t2)

d

dt
, (61)

A± = − i + γ

2
(t ± i)− i

2
(t ± i)2

d

dt
. (62)

From the conditions (56) we obtain by means of simple calculations

φ(t) = α(t − i)iγ−1, k = 1 − iγ

2
. (63)

Since k − ν must be integral, we have to put γ = 0 and ν = 1/2. In conclusion, we have
shown that the representation V νγ contains a positive-energy subrepresentation only if γ = 0
and ν = 1/2 and this subrepresentation is D1/2.

The canonical basis for this representation can be obtained starting from equation (63),
which in the interesting case, after normalization, takes the form

Z
1/2
1/2(t) = π−1/2(1 + it)−1. (64)

By successive applications of the raising operator A+ we obtain

Z1/2
m (t) = π−1/2(1 − it)m−1/2(1 + it)−m−1/2. (65)

Then we consider a representation of the kind (44). The generators of the infinitesimal
transformations are given by

E = i
∂

∂t
, (66)

D = −i − iκ
∂

∂κ
− it

∂

∂t
, (67)
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C = σκ + 2it + 2itκ
∂

∂κ
+ it2

∂

∂t
, (68)

K = 1

2
σκ + it + itκ

∂

∂κ
+

i

2
(1 + t2)

∂

∂t
, (69)

A± = −1

2
σκ − i(t ± i)

(
1 + κ

∂

∂κ

)
− i

2
(t ± i)2

∂

∂t
. (70)

The conditions (56) have the solution

φ(κ, t) = α(1 + it)−2kκk−1 exp

( −σκ
1 + it

)
. (71)

We see that this function can be square integrable only if σ = 1 and k > 1/2. In conclusion,
we have shown that the representation V νσ contains positive-energy subrepresentations only
if σ = 1 and the maximal positive-energy subrepresentation is D1 ⊕ D2 ⊕ · · · if ν = 0 and
D3/2 ⊕D5/2 ⊕ · · · if ν = 1/2.

The first function Zk
k of the canonical basis for the representation Dk can be obtained by

normalizing equation (71). The other functions are given by successive applications of the
raising operator A+. In this way we obtain

Zk
m(κ, t) =

(
2(2k − 1)(m− k)!

π(m + k − 1)!

)1/2(1 − it

1 + it

)m 1

1 + t2
xk−1L

(2k−1)
m−k (x) exp

( −κ
1 + it

)
, (72)

where

x = 2κ

1 + t2
= 2 Re

(
κ

1 + it

)
. (73)

We have used the following properties of the Laguerre polynomials [28]

L
(α)
0 (x) = 1, (n + 1)L(α)n+1(x) = x

d

dx
L(α)n (x) + (n + 1 + α − x)L(α)n (x). (74)

5. The covariance systems

As we have already observed, the unitary representation U can be decomposed into the direct
sum of IURs of the kind Dk . If in every invariant subspace we introduce a canonical basis, we
can describe the state vector ψ ∈ H by means of the coefficients ψαkm and the representation
U takes the form

[U(g)ψ]αkm =
∑
m′
Dk
mm′(g)ψαkm′ . (75)

The intertwining operator A transforms the vector ψ into a positive-energy vector
Aψ ∈ H′. The representation V acting on H′ can be decomposed into the direct sum of
representations of the kind V νγ or V νσ , which contain positive-energy subrepresentations of
the kind Dk . If we introduce in the corresponding invariant subspaces the canonical bases
introduced in section 4, we can write

Aψ =
∑
βkm

φβkmZ
k
βm, (76)

where the indexβ labels the subspaces in which equivalent representationsV νγ orV νσ operate.
It follows from the Schur lemma that the matrix that represents the intertwining operator

A is diagonal in the indices k,m and does not depend on the value of m, namely we have

φβkm =
∑
α

Ak
βαψαkm, (77)

Aψ =
∑
αβkm

Ak
βαψαkmZ

k
βm. (78)
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Since A is isometric, we have∑
β

Ak
βαA

k
βα′ = δαα′ . (79)

The probability density (26) is given by

ρ(t) =
∑
α

∣∣∣∣
∑
m

ψα,1/2,mZ
1/2
m (t)

∣∣∣∣
2

+
∑

ν=0,1/2

∑
β

∫ ∣∣∣∣
∞∑

k=ν+1

∑
αm

Ak
βαψαkmZ

k
m(κ, t)

∣∣∣∣
2

dκ. (80)

Note that there is no interference between terms with integral and half-odd values of k and
between terms with k = 1/2 and other values of k.

The integration over the variable κ can be performed, since we have∫ ∞

0
Zk
m(κ, t)Z

k′
m′(κ, t) dκ = π−1

(
1 − it

1 + it

)m−m′
1

1 + t2
Ckk′
mm′ . (81)

The coefficients Ckk′
mm′ are given by an integral containing the product of two Laguerre

polynomials, which can be expressed in terms of a generalized hypergeometric series [29]:

Ckk′
mm′ =

(
(2k − 1)(2k′ − 1)(m + k − 1)!

(m− k)!(m′ − k′)!(m′ + k′ − 1)!

)1/2

(k′ − k + 1)m′−k′
(k + k′ − 2)!

(2k − 1)!

× 3F2(k −m, k + k′ − 1, k − k′; 2k, k −m′; 1). (82)

For some values of the parameters the generalized hypergeometric series can be summed and
we obtain

Ckk′
mm = δkk′ , (83)

which ensures the orthogonality of the functions Zk
m, and

Ckk
mm′ = Ckk

m′m =
(
(m + k − 1)!(m′ − k)!

(m− k)!(m′ + k − 1)!

)1/2

, m′ � m. (84)

When the representation U is irreducible, namely U = Dk , the matrices Ak
βα disappear

and we obtain the simple formula

ρ(t) = π−1 1

1 + t2
∑
mm′

(
1 − it

1 + it

)m−m′

Ckk
mm′ψkmψkm′ . (85)

This formula is valid also for k = 1/2, when we have C1/2,1/2
mm′ = 1.

6. The free particle model and projective representations

In order to treat the model suggested in the introduction, based on a free particle in one
dimension, we note that the generators of the metaplectic representation are given by

E = 1
2P

2, C = 1
2Q

2, D = 1
4 (QP + PQ), K = 1

4 (P
2 + Q2). (86)

These formulae substituted into equation (16) give (19). The operatorK is half the Hamiltonian
of an harmonic oscillator with ω = m = h̄ = 1 and its eigenvalues are 1/4, 3/4, 5/4, . . . . It
follows that the metaplectic representation is reducible and is given byD1/4 ⊕D3/4. Since this
is a projective representation of G = SL(2, R) and a representation of its twofold covering
Mp(2) or, more in general, of its universal covering G̃, we have to adapt the methods introduced
in the preceding sections.

We indicate by S̃ the inverse image of S under the covering mapping G̃ → G and we
see that M̂ = G̃/S̃. The connected component of the identity S̃0 is isomorphic to S0, which
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is simply connected; we identify these two groups and we indicate their elements with the
symbol (u, d) (d > 0) defined by equation (30). It follows that S̃ is the product of S̃0 and the
centre Z̃ of G̃, which is composed of the elements of the form zn = exp(πn(e + c)), where n
is an integer and exp is the exponential mapping of G̃ (which is not a group of matrices).

The IURs of S̃ have the form

S((u, d)zn) = S0(u, d) exp(2iπnν), 0 � ν < 1. (87)

and, as in section 2, we define the corresponding induced representations V ν,γ and V ν,σ by
means of equation (28). It follows that

exp(−2iπnK) = V (zn) = exp(2iπnν) (88)

and we find also in this general case that K − ν has integral eigenvalues.
The generators of the infinitesimal transformations are represented by the same differential

operators found in section 4, though they are defined in different linear subspaces D. From
the conditions (56) we obtain again the solutions (63) and (71). The first is acceptable only if
γ = 0 and ν = 1/2 and the second is square integrable only if σ = 1 and k > 1/2. It follows
that V ν,1 contains the positive-energy IURs Dk with k = ν, ν + 1, . . . if 1/2 < ν < 1 and
k = ν + 1, ν + 2, . . . if 0 � ν � 1/2.

We see that D3/4 is contained in V 1,3/4, but D1/4 is not contained in any of the induced
representations. It follows that a normalized POVM can be found only for free particle
states which belong to the space of the representation D3/4, which is spanned by the odd
eigenstates of the harmonic oscillator Hamiltonian K . In other words, we have to require that
the wavefunction ψ(q) of the particle has odd parity and therefore it vanishes for q = 0. A
possible physical interpretation is to assume that there is an infinite potential barrier at q = 0
and t is the time at which the particle is reflected by the barrier.

We introduce in H a canonical basis composed of eigenfunctions of the operatorK and we
indicate by ψm,m = 3/4, 7/4, . . . , the coefficients of the corresponding expansion of ψ ∈ H.
By reasoning as in section 5 we obtain equation (85) with k = 3/4 and the covariant POVM
is uniquely determined. The wavefunction of the particle is given by

ψ(q) = π−1/4 exp

(
−q2

2

) ∑
m

ψm(2
nn!)−1/2Hn(q), n = 2m− 1/2 = 1, 3, . . . . (89)

If we require only the covariance with respect to the time translations, the POVM is no
longer unique. In [6, 7] a very natural choice of the POVM has been suggested, which, for
wavefunctions with a given parity, leads to the following probability density:

ρ(t) = π−1

∣∣∣∣
∫ ∞

0
exp

(
i

2
tp2

)
ψ̃(p)p1/2 dp

∣∣∣∣
2

. (90)

If only the amplitude with m = k = 3/4 is present, we obtain

ρ(t) =
(

2

π

)3/2(
A

(
5

4

))2( 1

1 + t2

)5/4

, (91)

while equation (85) gives

ρ(t) = π−1 1

1 + t2
. (92)

We see that the POVM described by equation (90) does not coincide with the one defined
by equation (85) and therefore it cannot be covariant with respect to the linear canonical
transformations.



3558 N Pinamonti and M Toller

7. Conclusions

We have described explicitly all the ‘positive-energy’ covariance systems based on the group
G = SL(2, R) = SU(1, 1) acting non-linearly on the projective real line M̂. This choice of
G and M̂ is the simplest one that presents a non-linear character and we have put in evidence
the peculiar aspects due to non-linearity. We have developed and described the mathematical
techniques which will also permit the treatment of similar, but more complicated problems. The
most important, but rather difficult, problem of this kind concerns the action of the conformal
group SU(2, 2) on the compactified Minkowski space–time, namely the quantum treatment
in a conformally covariant way of the coordinates of an event determined by photons. The
importance of photons in the discussion of the properties of the relativistic space–time does
not need to be illustrated.

In order to make more clear the structure of the problem, we have given a complete
treatment of the simplest physical system which presents a symmetry with respect to G =
SL(2, R), namely a particle constrained on a half-line. An interesting result is that a free
particle moving in the whole line does not allow a normalized covariance system with respect
to this symmetry group. This fact suggests that, also in the more complicate case mentioned
above, the existence of a suitable covariance system is not assured in all the relevant physical
situations.
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